In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA).

نویسندگان

  • Daniela B Meisinger
  • Johannes Zimmermann
  • Wolfgang Ludwig
  • Karl-Heinz Schleifer
  • Gerhard Wanner
  • Michael Schmid
  • Philip C Bennett
  • Annette S Engel
  • Natuschka M Lee
چکیده

Lower Kane Cave, Wyoming (USA), has hydrogen sulfide-bearing springs that discharge into the cave passage. The springs and cave stream harbour white filamentous microbial mats dominated by Epsilonproteobacteria. Recently, novel 16S rRNA gene sequences from the phylum Acidobacteria, subgroup 7, were found in these cave mats. Although Acidobacteria are ubiquitously distributed in many terrestrial and marine habitats, little is known about their ecophysiology. To investigate this group in Lower Kane Cave in more detail, a full-cycle rRNA approach was applied based on 16S and 23S rRNA gene clone libraries and the application of novel probes for fluorescence in situ hybridization. The 16S and 23S rRNA gene clone libraries yielded seven and six novel acidobacterial operational taxonomic units (OTUs) respectively. The majority of the OTUs were affiliated with subgroups 7 and 8. One OTU was affiliated with subgroup 6, and one OTU could not be assigned to any of the present acidobacterial subgroups. Fluorescence in situ hybridization distinguished two morphologically distinct, rod-shaped cells of the acidobacterial subgroups 7 and 8. Although the ecophysiology of Acidobacteria from Lower Kane Cave will not be fully resolved until cultures are obtained, acidobacterial cells were always associated with the potentially chemolithoautotrophic epsilon- or gammaproteobacterial filaments, suggesting perhaps a lifestyle based on heterotrophy or chemoorganotrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filamentous "Epsilonproteobacteria" dominate microbial mats from sulfidic cave springs.

Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the "...

متن کامل

Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic "Epsilonproteobacteria".

Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (...

متن کامل

Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To i...

متن کامل

Comparison of Bacterial Diversity in Azorean and Hawai'ian Lava Cave Microbial Mats.

Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai'i, to compare the bacterial diversity found in lava caves from two widely separated ...

متن کامل

Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy.

The sulfide-rich Frasassi cave system hosts an aphotic, subsurface microbial ecosystem including extremely acidic (pH 0-1), viscous biofilms (snottites) hanging from the cave walls. We investigated the diversity and population structure of snottites from three locations in the cave system using full cycle rRNA methods and culturing. The snottites were composed primarily of bacteria related to A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2007